Progress of Osaki CoolGen Oxygenblown IGCC with CO₂ Capture Demonstration Test

> October 20, 2021 Osaki CoolGen Corporation

Company Profile

Company name	OSAKI COOLGEN COF	RPORATION			
Founded	July 29, 2009				
Location	Hiroshima Prefecture, Japan	Sapporo Sendai Hiroshian Kyoto Tokyo Nagoya Osaka Osaka			
Investing enterprises	Chugoku Electric Power Co., Inc. (Energia) Electric Power Development Co., Ltd (J-POWER)				
Line of business	Construction of large-scale demonstration plant for oxygen-blown IGCC technology and carbon dioxide capture technology and conducting of tests using such plant				

Outline of Osaki CoolGen Project

For the realization of innovative low carbon coal-fired power generation in which IGFC, an ultimate high-efficiency power generation technology, is combined with CO₂ capture in order to significantly reduce CO₂ emission from coal-fired power generation.

2

The project is to be implemented in three steps. Step 1 was implemented from FY2012 as a subsidized project of the Ministry of Economy, Trade and Industry and Step 2 has been implemented since FY2016 as a NEDO subsidized project. Step 3 has been implemented since FY2018 as a NEDO subsidized project.

FY	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Step 1: Demonstration of oxygen-blown		sign, manu	facturing a	and installa	ation	Demo	nstration			Demon	stration
								Con	struction	Installat	ion
Step 2: Demonstration of IGCC with CO_2 capture (including CO_2 capture and	Design, manufacturing and installation Demonstration										
liquefaction process)										Demor	stration
Step 3: Demonstration of IGFC with CO ₂ capture							[Design,	manufactu installatior	uring and	

Demonstration Facilities (IGCC)

Items	Targets	Results	
Plant efficiency	Net efficiency 40.5% (HHV)	Net efficiency 40.8% (HHV)	Achieved
Emission level	 SOx : 8ppm NOx : 5ppm Particulate : 3mg/m³N (O2 equivalent 16 %) 	 SOx : <8ppm NOx : <5ppm Particulate : <3mg/m³N (O2 equivalent 16 %) 	Achieved
Coal variety compatibility	Applicable to various types of coal	Verified with four kinds of coal (including design coal)	Achieved
Reliability	Commercial-level annual plant availability of 70% or higher (5,000 hours endurance test)	 Endurance test 5,119h (accu Continuous operation 2,168h 	mulated) Achieved
Flexibility	Commercial-level (Load change rate of 1-3%/min)	 Load change rate ~16 %/min Minimum load 0MW(net) 	Achieved
Economy	To obtain a prospect of the equivalent or less generating cost with commercial PCF plant	Obtained a prospect of equiv generating cost with commer plant	alent cial PCF Achieved

IGCC with CO₂ Capture Flow (Step2)

CO₂ Capture Facilities

We have started CO₂ Capture test in December 2019.

Demonstration Targets and Progress (Step2)

Practical realization of a commercial scale plant through the demonstration of the system using the large-scale demonstration facilities with oxygen-blown IGCC combined with CO₂ capture facilities

Items	Targets	Results
Basic performance	 CO₂ recovery rate : 90% or more Purity of recovered CO₂: 99% or more 	 CO₂ recovery rate : 90% or more Purity of recovered CO₂: 99% or more Achieved
	The prospect of net efficiency 40% with capturing 90% of CO_2 in a commercial-scale plant (1500°C class IGCC)	Conduct the additional demonstration test on various operating conditions to optimize process Under verification
operability and reliability	Establishment of the operation method of IGCC with CO_2 capture and verification the reliability	 Established the method of start-up and stop of IGCC with CO₂ capture Verified with two different coals Under verification
economic efficiency	Evaluation of the cost per amount of recovered CO_2 in the commercial-scale IGCC plant using cost target data shown in the technology roadmap ^{*2} as a benchmark.	Evaluate after the demonstration test Under verification

*1 The power generation efficiency includes CO_2 capture process (except power for CO_2 storage)

*2 Technology roadmap for next-generation thermal power generation (METI, June 2015)

Change of gas composition (typical value)

Activity/Contribution to CO₂ Utilization

High quality CO_2 will be stably supplied to tomato cultivation demonstration field and carbon recycling RD&D users from the CO_2 capture unit attached to the oxygen blown IGCC demonstration test facility of Osaki Coolgen Project.

9

Supported by NEDO

As a Carbon Recycling demonstration, CO₂ captured in OCG project will be liquefied and transported to tomato cultivation farm by tank truck.

Promotion project on establishment of the Center

OCG will promote to establish the center of research while adjusting with other contractors, as a NEDO commissioned project.

Carbon Recycling RD&D (NEDO commissioned project)

Carbon Recycling 3C initiative, as a Japan policy, is decided to establish the Center of Research at Osakikamijima town, Hiroshima prefecture where CO₂ can be captured now.

	Theme	Contractor			
I. Promotion project on establishment of the Center for	Promotion project on establishment of the Center	Osaki Coolgen Corp.			
CO2 utilization	Optimization study and implementation for the basic research base establishment	JAPAN COAL FRONTIER ORGANIZATION			
Area ①	Development of Efficient CO2-Use Concrete	The Chugoku Electric Power co.,inc., KAJIMA CORP. MITSUBISHI Corp.			
II . Development of Technologies at the Center of research on CO2 utilization	Development of selective synthesis technology of chemical product for carbon recycling	Kawasaki Heavy Industries, Ltd., Osaka Univ.			
	Development of gas-to-lipids bio process	Hiroshima Univ. The Chugoku Electric Power co.,inc.			

Area ② Development of basic technology at the Microalgae Research Center	Establishment of a Research & Technology Center for Industrialization of Bio-Jet Fuel and Improvement of CO ₂ Utilization Efficiency Utilizing Microalgae	Institute of Microalgal Technology
---	--	------------------------------------

Contribution of OCG technology to De-carbonized Society "New possibility of Coal toward Carbon Neutral"

Thank you for your kind attention

We would like to express our gratitude to the Ministry of Economy, Trade and Industry (METI), and the New Energy and Industrial Technology Development Organization (NEDO) for continuous support to the Osaki CoolGen Project.

We will carry on design, construction and demonstration steadily and safely, and make our best effort to achieve successful completion of the Osaki CoolGen Project.

http://www.osaki-coolgen.jp

■ This ppt may not be reproduced in whole or in part without the permission.